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Abstract 

 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

has been widely used in time series forecasting especially with asymmetric 

volatility data. As the generalization of autoregressive conditional 

heteroskedasticity model, GARCH is known to be more flexible to lag structures. 

Some enhancements of GARCH models were introduced in literatures, among them 

are Exponential GARCH (EGARCH), Threshold GARCH (TGARCH) and 

Asymmetric Power GARCH (APGARCH) models. This paper aims to compare the 

performance of the three enhancements of the asymmetric volatility models by 

means of applying the three models to estimate real daily stock return volatility 

data. The presence of leverage effects in empirical series is investigated. Based on 

the value of Akaike information and Schwarz criterions, the result showed that the 

best forecasting model for our daily stock return data is the APARCH model. 
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I.  INTRODUCTION 

nowisthatmodelforecastingdatatime series

in economicscommonly used and known as the 

Moving AverageIntegratedAutoregressive

[ARIMA(p,d,q)] [1]model . differencing isnoIf

involved, this model is called an Autoregressive 

Moving Average [ARMA(p,q)] with p and q retaining 

their original meaning and no d. The ARIMA model is 

a linear and symmetric model which is appropriate only 

for linear and symmetric data [2].  However, one often 

finds asymmetric volatility time series data to forecast. 

To resolve such data, Autoregressive Conditional 

Heteroskedasticity (ARCH) was initially used to model 

inflation data in the UK which contained asymmetric 

volatility [3]. This model has been proved suitable for 

data having asymmetric volatility and short lag 

structures. The ARCH model was extended to GARCH 

which is more flexible to lag structures [4]. Both models 

have symmetrical volatility response characteristics to 

shocks, either positive or negative shocks. Financial 

data in particular stocks have asymmetric volatility, i.e. 

different volatility movements against an increase or 

decrease in the price of an asset [5]. Some of the models 

that can also be used to overcome asymmetric volatility 

problems such are TGARCH, EGARCH and APARCH 

models.  

ofhas the advantageThe TGARCH model

measuring the volatility of stock prices with any 

difference in the effects of positive shocks and negative 

shocks [6]. For an asymmetric model, the EGARCH 

model seems more suitable [7]. Then, the APARCH 

model is used to correct the weaknesses of the ARCH 

and GARCH models in capturing the asymmetry 

phenomenon [8]. 

II.   ASYMMETRIC-GARCH FAMILY MODELS 

In this section, we review the GARCH models 

preceded by Autoregressive Moving Average (ARMA) 

and Autoregressive Conditional Heteroskedasticity 

(ARCH) models. Then we present briefly the three 

asymmetric- GARCH family models.  

A. ARMA Model 

ARMA models provide a good forecast of volatility. 

An ARMA(p,q) model is a combination of AR(p) and 

A 
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MA(q) models and is suitable for univariate time series 

modeling [9-10].  The ARMA(p,q) model can be 

expressed as: 

𝑦𝑡 = 𝑐 + 𝜀𝑡 + ∑ 𝜑𝑖𝑦𝑡−1
𝑝
𝑖=1 + ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞
𝑗=1                 (1) 

Here the model orders p, q refer to p autoregressive 

and q moving average terms. This form of model 

assumes that the time series is stationary. In the absence 

of a stationary process, the impact of previous values is 

non-declining. If a process contains a unit root that is 

non- stationary, and it cannot be modeled as an ARMA 

model, it instead has to be modeled as an ARIMA. 

B. ARCH Model 

The Autoregressive Conditional Heteroskedasticity 

model, also known as ARCH, is useful when the data 

researched is a non-linear character.  One approach 

used is to include a free variable capable of predicting 

the volatility of the error [11]. This varied range of 

errors occurs because the error range is not only a 

function of the free variable but also depends on the 

extent of the error in the past [3]. In the cross-section 

data, the heteroskedasticity that occurs directly related 

to free variables, so to overcome it only needs to do the 

transformation of the regression equation. However, in 

the ARCH model, heteroskedasticity occurs because 

time series data has high volatility. If a data during a 

period has a high fluctuation and the error is also high, 

followed by a period where the fluctuation is low and 

the error is also low, the error range of the model will 

depend on the fluctuation of the previous error. If the 

error range depends on the fluctuation of the quadratic 

error from some previous period (lag p), then the ARCH 

model (p) can be expressed in terms of the following 

equation, 

 

𝜎𝑡
2 = 𝜃0 + 𝜃1𝑒𝑡−1

2 + 𝜃2𝑒𝑡−2
2 + ⋯ + 𝜃𝑝𝑒𝑡−𝑝

2               (2) 

 

To check the existence of the effect of asymmetric 

effect one can use a sign bias test. Another way is by 

looking at the correlation between standard residual 

squares of ARMA model with GARCH residual 

standard lag model using cross correlation. If there is a 

stem that exceeds the standard deviation or is marked 

by an asterisk, meaning that bad news and good news 

conditions have an asymmetrical effect on volatility. 

C. GARCH Model 

If the ARMA model is assumed to have an error 

variant, it is recommended to use the GARCH model 

[4]. In the GARCH model, the error range depends not 

only on past error but also on the error of the past period 

[12]. If the error range is affected by the previous period 

p error (lag p ARCH element) and the error range q of 

the previous period (lag q GARCH element), then the 

GARCH model (p, q) can be expressed as: 

 

𝜎𝑡
2 = 𝜃0 + 𝜃1𝑒𝑡−1

2 + 𝜃𝑝𝑒𝑡−𝑝
2 + 𝜆1𝜎𝑡−1

2 + ⋯ + 𝜆𝑞𝜎𝑡−𝑞
2      (3) 

 

 

D. Three Extensions of GARCH Models 

a. EGARCH Model  

The EGARCH model has the following form, 

 

Ln(𝜎𝑡
2) = 𝜔 + 𝛽ln(𝜎𝑡−1

2 ) + 𝛾
𝑒𝑡−1

√𝜎𝑡−1
2

+ 𝜆 [
|𝑒𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
]    (4) 

 

where ω, β, γ and λ are the estimated parameters. 𝐿𝑛 𝜎𝑡
2 

is an exponential GARCH model, ω is a parameter of 

the ARCH model, β is the magnitude of the effect of 

positive issues on the current variety, γ is the magnitude 

of the effect of last period's volatility affecting the 

current variety and λ is a parameter of GARCH model. 

 

b. TGARCH Model 

The threshold GARCH (TGARCH) model is a 

development of the model (EGARCH) and the GJR-

GARCH model. Given Yt is the random variable iid 

(independent identical distribution) with E (Yt) = 0 and 

Var (Yt) = 1. Then (et) is called the threshold GARCH 

process (p, q) if it satisfies an equation of form, 

{
𝑒𝑡 =  𝜎𝑡𝑌𝑡

𝜎𝑡 = 𝜃0 +  ∑ 𝜃𝑖
(1)

𝑒𝑡−𝑖
(1)

− 𝜃𝑖
(2)𝑝

𝑖=1 𝑒𝑡−𝑖
(2)

+ ∑ 𝜆𝑗𝜎𝑡−𝑗
𝑞
𝑗=1

       (5) 

 

where et
(1) = max(et,0), et

(2) = min(et,0) dan et = et
(1) - 

et
(2)  are the effects of the threshold. The variables θ0, 

θi
(1)

, θi
(2), and λi are native numbers [12]. Based on the 

equation (2.25), the value of σt
2 is 

 

σt
2 = 𝜃0 +  ∑ 𝜃𝑖𝑒𝑡−𝑖

2𝑝
𝑖=1 + 𝛾𝑖 𝑒𝑡−1

2 𝑑(𝑒𝑡−𝑖)>0 + ∑ 𝜆𝑗𝜆𝑗
2𝑞

𝑗=1     (6) 

 

Conditions in the event of good news (𝜀𝑡> 0) and 

bad news (𝜀𝑡< 0) give a different effect on the variety. 

The influence of good news is shown by θ while the 

influence of bad news is shown by (θ + γ). If γ ≠ 0, then 

there is an asymmetric effect. The 𝑒𝑡 series has an 

average of zero and no correlation. Let yt be the 

observational set during time t, with t = 1, 2, ...,t being 

influenced by the exogenous variable 𝑥𝑡
′ where 𝑥𝑡 

′ is the 

vector of the weak independent variable of size nt, d is 

the parameter vector or coefficient of the exogenous 
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variable. Parameters d, 𝜃0, θi, λj, and γi are parameters 

in the estimation, whereas γi is also a leverage effect. 

c. APARCH Model 

The APARCH model which is used to improve the 

weaknesses of ARCH and GARCH models in capturing 

the asymmetric power of good news and bad news in 

volatility [8]. Bad news means that information will 

have a negative impact on the volatility, such as a 

drastic increase in fuel prices and a sharp rise in 

inflation. Good news means that information will have 

a positive impact on the volatility, such as a sharp 

increase in sales, decreased loan interest rates and 

business expansion. The general form of the APARCH 

model (p, q) is: 

 

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖(|𝑒𝑡−1|−𝛾𝑖𝑒𝑡−1)𝛿𝑝

𝑖=1   + ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿𝑞

𝑗=1       (7) 

 

and ω > 0, δ > 0, and -1 <γi< 1 and are estimates, δ 

estimated using Box Cox transform in standard 

deviation condition, 𝛾𝑖 ′𝑠 are leverage effects. If the 

leverage effect is positive, meaning that bad news has a 

stronger influence compared to good news, and vice 

versa, et  is the t-th residual data. 

E. Information Criteria  

There are two criteria that can be considered in 

determining the best model, they are Akaike 

Information Criterion (AIC) [13-14]. The formula:  

𝐴𝐼𝐶𝐶 = 2𝑘 − 2ln (𝐿̂)                                  (8) 

And Schwarz Criterion (SC) with formula:     

𝑆𝐶 = ln(𝑛) 𝑘 − 2 ln(𝐿̂)                               (9) 

where 𝐿̂ = 𝑝(𝑥|𝜃, 𝑀), 𝜃  are the parameter values that 

maximize the likelihood function, x = the observed 

data, n = the number of data points in x, and  k = the 

number of parameters estimated by the model [15].  

Both criterions are used to select a model without a test. 

A model is said to be interconnected from the second 

model if and only if the collection of independent 

variables of the first model is part of the independent 

variable of the second model. In practice, the 

determination of a best model can be done by looking 

at the lowest values of AIC and SC. 

III.  MATERIALS AND METHODS 

The data used in this paper is the daily stock price 

return data of Indonesian consumers goods company 

during the period of February 11, 2012 to November 10, 

2017.  To forecast the best asymmetric volatility 

models, first we identify the assumption of stationarity 

of the data graphically and use the Augmented Dickey-

Fuller (ADF) test. If the data meet the assumptions, the 

next step is to forecast the best ARMA(p,q) models that 

indicate the best Box-Jenkins models in certain lags 

using Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) plots. The next step 

is estimating the best ARMA(p,q)  models parameters 

using Akaike Information (AIC) and Schwarz 

Criterions (SC) values.  Afterward, we test the ARCH 

effect using ARCH-LM  and test the asymmetry in 

volatility using sign bias test before estimating 

EGARCH, TGARCH, and APARCH models.  Finally, 

to determine the best asymmetric volatility model, we 

evaluate the smallest values of the AIC and SC values 

of the models. 

IV.  RESULTS AND DISCUSSIONS 

A. Identification 

The identification of the assumption of stationarity 

of the data graphically shows that the daily stock price 

return data is stationary either in the mean or variances. 

However, to ensure the stationary, we do a unit root test 

(ADF-test) with a hypothesis. The null hypothesis of a 

unit root is rejected (P-value = 0.0000) which means the 

data is stationary. We, therefore, conclude that the time 

series is stationary at the level and we can proceed to 

model ARMA(p,q). 

 

 

Figure 1.   The Plot of the daily stock price return data 

 

B. Selection of ARMA(p,q) 

To select the best ARMA(p,q), first we plot the 

Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) as shown in Figure 

ure 2. 

The correlogram plot of ACF and PACF shows that 

lags 1 and 2 are significantly different from other lags. 

This indicates the best Box-Jenkins models most 

probably are in those lags. Referring to the plot, 

evaluation of ARMA (1,0), (0,1), (1,1), ARMA (2,0), 

ARMA (0,2), and ARMA (2,2) models are carried out. 
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Figure  2.  Correlogram plot. 

 

We use AIC and SC to select the best parameters p 

and q of ARMA to fit in the series. The result of the 

ARMA(p,q) selection models are shown in Table 1. The 

table shows that all parameters for ARIMA (0,1) are 

significant and has the lowest values of AIC and SC 

compared to other models.  This indicates that the best- 

suited model for the mean equation is an ARMA (0,1) 

model for all time series. To ensure the result, a residual 

correlogram was used and show that ARMA(0,1) is 

really the best model among all the ARMA(p,q) 

models.  

Table 1.  Selection of ARMA(p,q) 

No. Model  Para meter Para meter 

Estimate 

P-Value AIC SC 

1 ARMA 

(1,0) 
𝛽1 -0.300011 0.0000 -3.92939 -3.92594 

𝛽1 -0.301622 0.0000   

2 ARMA 

(0,1) 
𝛼1 -0.360420 0.0000 -3.94919 -3.94574 

𝛼1 -0.365618 0.0000   

5 ARMA 
(1,1) 

𝛽1 0.106622 0.1232 -3.94896 -3.94206 

𝛼1 -0.454168 0.0000 

𝛼1 -0.472038 0.0000 

7 ARMA 

(2,0) 
𝛽1 -0.338130 0.0000 -3.94366 -3.93676 

𝛽2 -0.126629 0.0000 

𝛽1 -0.340764 0.0000 

𝛽2 -0.129243 0.0000 

9 ARMA 
(0,2) 

𝛼1 -0.348563 0.0000 -3.94918 -3.94229 

𝛼2 -0.036189 0.1543 

𝛼1 -0.352629 0.0000 

𝛼2 -0.365618 0.1112 

11 ARMA 

(2,2) 
𝛽1 0.907156 0.0070 -3.94622 -3.93242 

𝛽2 -0.058230 0.5323 

𝛼1 -1.255655 0.002 

𝛼2 0.342298 0.0607 

C. ARCH and GARCH Test 

In the next step, we test the ARCH effect using The 

Lagrange Multiplier (LM) test. The result is presented 

in Table 2.  

 

Tabel 2. ARCH-LM effect 

  Statistics/Probability Values 

F-statistic 295.8919 

Obs*R-squared 248.7307 

Prob. F(1,1192) 0.0000 

Prob. Chi-Square(1) 0.0000 

  

By looking at the probability of χ2-statistic of 

ARCH-LM test (p-value = 0.0000),  it can be concluded 

that the squared residuals from previous lags are 

correlated with the squared residual at time t. This 

indicates the existence of Heteroskedasticity in the data. 

As a result, the GARCH model can be used to the data. 

From the evaluation of GARCH models based on the 

AIC and SC values, the results show that the 

GARCH(1,0) model has all parameters significant and 

lowest values of  AIC and SC.  This indicates that 

GARCH(1,0) is better than others.  Diagnostic checking 

for GARCH(1,0) model using Ljung Box-Pierce gives 

significant results with p-value >0,5 which indicating 

the model is appropriate.  Therefore,  the GARCH(1,0) 

model is good for making a better estimate for the data.    

In the following step, we evaluate the presence of 

volatility in the data using a sign bias test.  The analysis 

of the sign bias test has p-value=0.0000. The null 

hypothesis of the test was rejected.  It can be concluded 

that positive and negative shocks impact the volatility 

differently. GARCH models could,Asymmetric

in explaining conditionaltherefore, perform well

volatility for the data.   The usage of an asymmetric 

GARCH model is hence justified by the test. 

D. Estimation and Comparison of  Volatility 

Asymmetric Models 

of asymmetric GARCHseriesaofEstimation -

family models to explain conditional variance and 

volatility clustering using Ljung-Box on various lags 

gives a result of EGARCH(1,1), TGARCH(1,1)  and 

APARCH(1,3) are best three models among all models 

in the lags.  All parameters of EGARCH(1,1) having p-

value<0.01.   A similar result for the estimation of the 

TGARCH model gives all parameters of 

TGARCH(1,1) having p-value<0.01.  Estimation of the 

APARCH model gives the parameters of APARCH 

(1,3) having p-value<0.01.  This indicates that 
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EGARCH(1,1), TGARCH(1,1), APARCH (1,3) 

models are appropriate for forecasting the data.   

To c ofperformanceompare the best

TGARCH(1,1), EGARCH(1,1)and APARCH (1,3) 

models, AIC and SC are used.  The summary of the 

comparative performance of the three models is 

presented in Table 3.  Based on the values of AIC and 

SC, it can be concluded that APARCH(1,3)  model 

outperforms the other models since it has a statistically 

significant estimation of all parameters and smallest 

AIC and SC values. 

 

Table 3.   Comparison of performance asymmetric 

volatility models 

No Model Paramet

er 

Coefficien

t 

P-

value 

AIC SC 

1 

 

 

EGARCH 

(1,1)  

 

𝜔 -11.6172 0.0000 -4.67259 -4.65536 

𝜃1 0.09259 0.0000 

𝛾1 -0.23949 0.0000 

𝜆1 -0.54011 0.0000 

2 

 

 

TGARCH 

(1,1)  

 

𝜔 5.14E-5 0.0000 --4.78279 -4.76554 

𝜃1 0.15533 0.0000 

𝛾1 0.52850 0.0000 

𝜆1 0.67815 0.0000 

3 

 

 

APARCH 

(1,3) 

 

 

𝜔 0.00067 0.0000 -4.84165 -4.81407 

 

 
𝛼1 0.23477 0.0000 

𝛾1 0.30894 0.0000 

𝛽1 1.43225 0.0000 

𝛽2 -0.77521 0.0000 

𝛽3 0.14983 0.0000 

𝛿 1.20962 0.0000 

IV.  CONCLUSION    

volatilityThe asymmetric models such as 

APARCH, EGARCH,  and TGARCH are suitable for 

modeling the volatility data. In this study, the APARCH 

(1,3) is more suitable than EGARCH(1,1) and 

TGARCH(1,1) for modeling the daily stock price return 

data of Indonesian consumers goods company since it 

has the lowest AIC and SC scores and has all 

statistically significant estimation parameters.  
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